FAR BEYOND

MAT122 Linear Applications

Increasing Linear Function

Recall: linear function graphs as a <u>line</u>

ex. In between 1900 and 1912, Olympic winning pole vault heights increased consistently

at the rate of 2 inches per year.

150

 Winning height (approximate) for Men's Olympic Pole Vault

 Year
 1900
 1904
 1908
 1912

 Height (inches)
 130
 138
 146
 154

t = 4

t is # years since 1900

Rise = 8

8

y is winning height

then
$$y = f(t) = 2t + 130$$
 how?

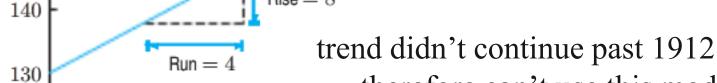
t = 0

rate is 2 (given)

y-intercept occurs when t = 0

t = 8

t = 12



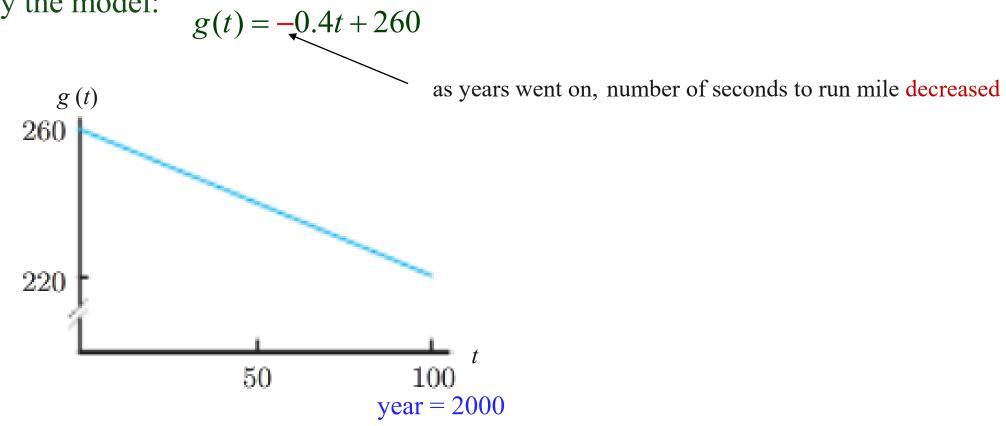
therefore can't use this model to predict later winning heights

note: even though data is discrete(1 value every 4 yrs), author chose to represent data as continuous on graph

Decreasing Linear Function

ex. In the years since 1900, the world record time to run the mile (in seconds)

is represented by the model:



interpretation: no x-intercept because... it will never take 0 seconds to run the mile

Linear Functions - Applications

- ex. A clothing firm has fixed costs of \$10,000 per year.
 - To produce *x* units, it costs \$20 per unit (in addition to fixed costs).
 - a. Write a function that represents the total cost for *x* units.

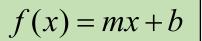
$$C(x) = \text{(variable costs)} + \text{(fixed costs)}$$

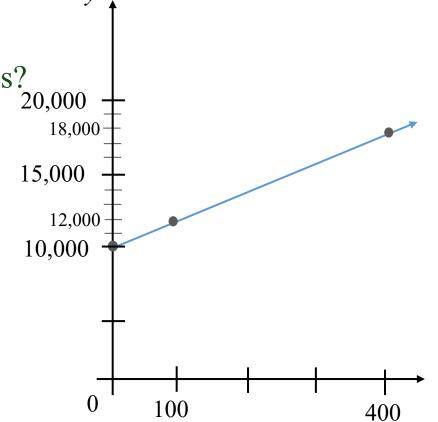
= $20x + 10,000$

b. What is the total cost for producing 100 units? 400 units?

$$C(100) = 20(100) + 10,000$$
 $C(400) = 20(400) + 10,000$
= 2,000 + 10,000 = 8,000 + 10,000
= \$12,000 = \$18,000

c. Graph the function, C(x).





Profit and Loss Analysis

ex. When a business sells an item, it receives the amount (price) paid by the consumer. Note: price is normally greater than the cost of producing the item.

The **Total Revenue** a business receives can be shown as the function R(x) where:

$$R(x) = (Unit Price)(Qty Sold)$$

from previous slide: If 1 unit is sold for \$80, total revenue would be: R(x) = 80x

and recall: C(x) = 20x + 10,000

Then the **Break Even Point** occurs when R(x) = C(x).

$$80x = 20x + 10,000$$

$$60x = 10,000$$

$$x = \frac{10,000}{60} \approx 167 \text{ units}$$

